
Functional statistical classification of non-linear
dynamics and random surfaces roughness in

control systems
Javier Álvarez-Liébana and M. Dolores Ruiz-Medina

Abstract— This paper addresses, in a nonparametric functional
statistical framework, the problem of classification of nonlinear fea-
tures of curve and surface data in control systems. Specifically,
on the one hand, in the detection of nonlinear dynamic features,
wavelength absorbance curve data are analyzed for different meat
pieces to discriminate between two categories of meat in quality
control in food industry. On the other hand, in the nonparametric
functional classification of deterministic and random surface rough-
ness and irregularities, in the field of railway engineering, train
deterministic and random vibrations are analyzed to discriminate
between different nonlinear features characterizing roughness and
irregularities of railway.

Keywords— Functional nonparametric classification, Irregularity
of railway track, n-dimensional numerical integration, Random sur-
faces, Random vibrations, Smolyak quadrature.

I. INTRODUCTION

Non-linear dynamics and features in the data can be cap-
tured and suitable analyzed within the Functional Statistical
framework. Temporal and spatial functional statistics are re-
latively recent branches of Statistics, where non-parametric
statistical techniques are now been developing to approxim-
ate the nonlinear functional form of the probability distribu-
tion underlying to a sequence of random curves, surfaces, etc.
In this context, new criteria for curve classification are pro-
posed (see [8, 31], among others).

These procedures for random curve classification are de-
signed in the absence or in the presence of interactions
between different individuals, as well as between different
times (see [1, 8, 16, 18, 24, 26]). In [18], a variant of lin-
ear discriminant analysis, in terms of the curve projections
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assuming a Gaussian distribution with common covariance
matrix for all classes, is considered in the setting of filter-
ing methods. Specifically, minimization of the distance to
the group mean is the criterion adopted in this functional
classification methodology. In [16] a likelihood-based ap-
proach based on quadratic discriminant analysis is presented.
They propose a fully nonparametric density estimation, and,
in practice, multivariate Gaussian densities are considered.
Dealing with nonlinear discriminant algorithms, the learn-
ing optimal kernel for kernel Fisher discriminant analysis
(KFDA) is proposed in [10] to be able to optimize a combina-
tion of weight coefficients and kernels. In a generalized linear
model framework, the model-based functional classification
procedures proposed in [23, 32] are implemented. Specific-
ally, for dimension reduction, Functional Principal Compon-
ent Analysis (FPCA), and local wavelet-vaguelette decom-
position are considered. K-nearest neighbor method is ap-
plied to Fourier coefficients in [5]. Wavelet bases are selected
for projection in [4]. In [19] spline bases are considered in a
random effect model context, combining the best properties
of filtering and regularization methods. These methods are
effective when the observations are sparse, irregularly spaced
or occur at different time points for each subject (see also [2],
where B-splines bases are previously chosen for projection
in the application of k-means-based classification procedure).
In [14], a support vector machine is used to scene classific-
ation, in order to construct an effective clustering procedure
for real time applications, in particular, for image sequence
classification depending on several factors.

Functional nonparametric statistical classification proced-
ures, based on kernels, are extensively developed in the con-
text of statistical learning methods (see, for example, [39]).
In this framework, the unknown function is estimated, con-
sidering its optimal approximation in a functional class given
by a Reproducing Kernel Hilbert Space (RKHS), under some
prescribed criterion. Chaos game representation and multi-
fractal analysis can also be considered in the classification
of functional protein sequences displaying singular features
(see, for instance, [45, 46]).

This paper deals with the functional statistical nonpara-
metric classification of non-linear random functions with n-
dimensional support (e.g., curves, surfaces, etc.). They are
assumed to be uncorrelated random functions. As motivation
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for illustration of the proposed functional nonparametric stat-
istical methodology we address two problems in the applied
areas of food industry and railway engineering. Specifically,
fat content is first analyzed for classification of meat pieces,
from the observation of spectrometric curve data correspond-
ing to the absorbance measured at 100 wavelengths. On the
other hand, in the random surface discrimination context, the
statistical analysis of train deterministic and random vibra-
tions is achieved from the nonparametric functional statist-
ical classification of rail roughness and irregularities. The
results obtained, after the implementation of the proposed
classification methodology are showed in Sections IV. and
VI., respectively. In such an implementation, an extended
version of the classification algorithm formulated in [8] is
derived. Namely, numerical integration is performed by ap-
plying Smolyak quadrature rule, after interpolation over a
finer n - dimensional grid the values observed at a coarser
grid, which constitutes our actual functional dataset. Differ-
ent semi-metrics can then be applied, mainly based on FPCA
and Functional Partial Least Squares Regression (FPLSR),
which is an extension of Partial Least Squares technique (see,
e.g., [29]). In addition, the kernel estimation of the posterior
probability of belonging to each one of the categories defin-
ing the response provides us a rule for classification of the
observed n - dimensional supported functional data in a non-
parametric statistical context.

The resulting classification procedure for non-linear ran-
dom functions with n-dimensional support, in the context
of nonparametric functional statistics, allows discrimination
in a more flexible framework. In particular, this paper
provides an extension to the two-dimensional case of the
one-dimensional models proposed in [9, 25, 47] for the ana-
lysis of imperfections of railway track. These irregularities
are the second source of bridge vibrations and the first one
of train vibrations, and can be classified into non-random and
random irregularities (as the roughness of the rails). The dy-
namics of these railway tracks under moving trains must be
taken into account in order to construct and design the rail-
way bridges and beams, as well as to locate and construct
the railway stations and surrounding buildings. The effects
of rail roughness and rail irregularities on the dynamic be-
havior of bridge and vehicles are considered in [25, 47]. In
this paper, the non-random imperfections are represented in
terms of a two-dimensional function perturbed by Gaussian
white noise, reflecting the measurement device error, while
the random ones will be defined in terms of zero-mean Gaus-
sian random surfaces, displaying different non-linear spatial
patterns according to their spatial correlation structure.

The outline of the paper is as follows. Section II. presents
some preliminaries definitions and elements involved in the
functional statistical nonparametric classification algorithm
studied in [8]. Section III. establishes the main steps of the
proposed classification algorithm for n-dimensional suppor-
ted non-linear random functions, and in particular, for ran-
dom curves and surfaces. The application of this algorithm
to spectrometric curve data for meat piece classification ac-
cording to fat content is illustrated in Section IV.. Section V.

provides a training simulation study to discriminate between
different trend surfaces in Gaussian random surface classific-
ation. A simulation study is undertaken in Section VI. for
illustration of the proposed functional classification method-
ology for perturbed deterministic and random irregularities in
the surface of railway track. Conclusions are drawn in Sec-
tion VII..

II. PRELIMINARIES ABOUT FUNCTIONAL
NONPARAMETRIC CLASSIFICATION

Let us first introduce the preliminary elements and defini-
tions, as well as the needed notation required for the descrip-
tion of the curve statistical functional classification algorithm
proposed by [8] in a nonparametric framework.

Assume that T = (tmin, tmax) is an interval in IR. We
shall use the notation:
• χ = {χ(t); t ∈ T} for representing a functional random

variable (f.r.v.), that is, a random variable χ that takes val-
ues in an infinite dimensional space.

• χ functional data (f.d.) denotes an observation of χ.

• We shall denote a funcional dataset (f.dat.) {χi}i=1,...,n as
the observation of n-sample f.r.v {χi}i=1,...,n ∼ χ.
Different families of semi-metrics mainly based on FPCA

(see [17] among others), FPLSR, and derivatives are com-
monly used to measure distances between curves. In the con-
text of infinite dimensional spaces, they are usually computed
by numerical integration, considering, in our case, n-dimen-
sional integration based on suitable quadrature rules.

II..I. FUNCTIONAL PRINCIPAL COMPONENT
ANALYSIS (FPCA)

This technique is based on projection into the eigenvector
system of the covariance operator, obtaining a series expan-
sion of the f.r.v. defining our data set, in terms of uncorrel-
ated r.v., with scale parameters given by the square root of
the associated eigenvalues. It is well-known that PCA (with
euclidean metric) is formulated as follows:

zi =
〈vi,x〉
‖vi‖

=
1

‖vi‖

p∑
j=1

vijxj =
1

‖vi‖
vTi x (1)

x =

p∑
j=1

ejxj =

p∑
j=1

vjzj , (2)

where, for i = 1, . . . , p, E
[
z2
i

]
= λi, with λ1 ≥ . . . ≥ λp.

In the infinite-dimensional case, we consider the spaces Lp

with respect to a measure µ, introduced in terms of the semi-
norm ‖ · ‖p, given by

‖f‖p :=

(∫
|f (x) |pµ (dx)

) 1
p

. (3)

In particular, we concentrate in the case of p = 2, where
we have a Hilbert space structure. Recall the fundamental
definitions associated with this case.
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Definition 1 (Eigenfunctions) Let A be a linear operator, a
function f 6= 0 is an eigenfunction of A if Af = λf.

Definition 2 (Orthogonal functions) Let (H, 〈., .〉) be a
real valued pre-Hilbert space with the inner product

〈f, g〉w =

∫
f(x)g(x)w(x)dx, ∀f, g ∈ H,

where w is a weight function. Two functions f, g are then
orthogonal iff 〈f, g〉w = 0.

The resulting series expansions in PCA (on left) and FPCA
(on right) are given as follows, when {vj} are normalized:

zj = 〈vj ,x〉 zj =

∫
χ(x)vj(x)dx (4)

x =

p∑
j=1

vjzj χ(x) =
∞∑
j=1

vj(x)zj (5)

Thus, for the infinite-dimensional case we have

χ(z) =(5)
∞∑
j=1

(∫
χ(x)vj(x)dx

)
vj(z), (6)

and its truncated version can be written as

χ̂(q)(z) =(6)

q∑
j=1

(∫
χ (x) vj (x) dx

)
vj(z). (7)

From (7), the following semi-norm can be defined:

dFPCAq (χ1,χ2) =

√√√√ q∑
j=1

(∫
[χ1 − χ2] (x) vj (x) dx

)2

(8)
From a practical point of view, the above integrals are ap-

proximated by a quadrature rule. Specifically, for the ob-
served discretized curves, namely, x1 and x2, the following
numerical approximation is computed:

dFPCAq (x1,x2) =

√√√√√ q∑
j=1

(
I∑
i=1

wi [x1 − x2] (ti) vji

)2

(9)
where ti (i = 1, . . . , I) are the nodes, 1 ≤ q ≤ n the num-

ber of components chosen, Σχ (s, t) = 1
n

n∑
i=1

χi (s)χi (t)

the empirical version of covariance kernel, i.e., its empirical
matrix approximation, vj = (vj1, . . . , vjI) , j = 1, . . . , q,

are the empirical eigenvectors of W1/2ΣW
1/2
I×I , with W =

diag (w1, . . . , wI) being a diagonal matrix with non-null
entries given by the quadrature weights provided by a quad-
rature rule.

II..II. FUNCTIONAL PARTIAL LEAST SQUARES
REGRESSION (FPLSR)

The Multivariate Partial Least Squares Regression (MPLSR)
is an extension of PLSR motivated by dealing with multivari-
ate response or when the number of predictors is very large
in comparison with the number of observations.

We can apply MPLSR with only one scalar response but it
would be inadequate with regard to the complexity of func-
tional data. Hence, we are going to construct a multivariate
response binary matrix where each column j represents if the
i-th observation belongs to class j. Such as FPCA technique,
we can extend MPLSR to FPLSR in functional framework,
providing us g components depending on a number of factors
q, which plays similar role to the number of dimensions re-
tained in FPCA. The main difference between FPCA and
FPLSR comes from the fact that the FPCA explains only the
predictors, whereas the FPLSR approach computes a simul-
taneous decomposition of the set of predictors and responses,
being able to explain both predictors and responses. Thus,
we get a similar FPCA formula:

dFPLSRq (x1,x2) =

√√√√√ g∑
j=1

(
I∑
i=1

wi [x1 − x2] (ti) v
q
ji

)2

(10)
where vq1, . . . ,v

q
g are performed by FPLSR.

II..III. SEMI-METRICS BASED ON DERIVATIVES

Lastly, we introduce the semi-metric based on derivatives.
That is, the L2 distance between the derivatives of differ-
ent orders of two given curves is established as a measure
of closeness in the following way:

dderivq (χ1, χ2) =

√∫ (
χ

(q)
1 − χ

(q)
2

)2

(x) dx (11)

where χ(q) is the qth derivative of χ and dderiv0 = dL2 .
To avoid stability problems with derivatives, a B-spline

basis approximation is usually considered (see, e.g., [6, 40]).
Using the discretized curve xi = (χi(t1), . . . , χi(tI)), we
obtain the following approximation:

χ̂i(.) =

B∑
b=1

β̂ibBb(.) χ̂
(q)
i (.) =

B∑
b=1

β̂ibB
(q)
b (.) (12)

where {B1, . . . , BB} is a B-spline basis. Thus, for numerical
approximation of

dderivq (x1,x2) =

√∫ (
χ̂

(q)
1 (x)− χ̂(q)

2 (x)
)2

dx, (13)

a quadrature rule is considered. Note that B-spline basis al-
low to work even with unbalanced data sets.
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II..IV. NUMERICAL INTEGRATION: QUADRATURE
RULES

To define all of these semi-metrics in a functional space, nu-
merical integration in terms of a quadrature rules is required.
Let see a brief about them.

There is a large variety of one-dimensional numerical
integration procedures, as the trapezoidal rule [12], the
Clenshaw-Curtis rule (see [12, 20, 28]) and Gauss rules in-
troduced in [7, 11, 20]. We can also use stochastic simula-
tion applying methods such as Monte Carlo (MC) and Quasi-
Monte Carlo methods (QMC) (see, for example, [11]). We
will restrict our attention to numerical integration, since a set
of weights is needed.

According to [12, 20], in the following, we consider func-
tions f(x) from a regular function class:

Cr (Ω) :=

{
f : Ω ⊂ IRn → IR,

∥∥∥∥∂sf∂xs

∥∥∥∥
∞
<∞, s ≤ r

}
.

(14)
As we will see, the goal is to approximate the integral in a
subset Ω of IRn, Inf :=

∫
Ω
f(x)dx by a sequence of nl -

point quadrature (nl = 2l−1 + 1).

II..V. FUNCTIONAL NONPARAMETRIC
SUPERVISED CLASSIFICATION OF RANDOM

CURVES

As described in [8], we now observe a f.r.v χ and a categor-
ical response y that represents the class membership of each
element. The main aim is to be able to predict the class mem-
bership of a new f.d., by means of a nonparametric rule. De-
noting by (E, d) a semi-metric space and G = {1, . . . , G}
a set of integers, we consider (χi,yi)i=1,...,n ∼ (χ,y) to
be a sample of n independent pairs in E ×G. Thus, (χi, yi)
denotes an observation of (χi,yi)i=1,...,n , and (xi, yi), with
xi = (xi1, . . . , xiI) being the discretization of (χi, yi).

Applying the Bayes rule, our goal is estimate pg (χ) =
P (Y = g|χ = χ) = E [1Y=g|χ = χ]

(
g ∈ G

)
, doing the

assignment:

ŷ (χ) = arg max
g∈G

p̂g (χ) (15)

where p̂g (χ) = (p̂1 (χ) , . . . , p̂G (χ)) are the estimated pos-
terior probabilities and 1Y=g is the indicator function.

Let K be a kernel function and Λ : IRp → IR a function
(an operator in the infinite-dimensional case) which we want
to estimate. We define the kernel smoother as:

Kh (χ,χi) := K

(
d (χ,χi)

h (χ)

)
, (16)

where K is a positive kernel function that decreasing with
the distance between χi and χ, h (χ) is a positive bandwidth,
depending on χ. Therefore, we can use the truncated kernel

regression estimator of Λ proposed in [27, 43], in an infinite-
dimensional setting, as follows:

Λ̂ (χ) :=

n∑
i=1

Kh (χ,χi) Λ (χi)

n∑
i=1

Kh (χ,χi)

, (17)

where Λ (χi) = E [1Yi=g|χi = χi] = 1yi=g = pg (χi) =
1. Thus, according to (17):

p̂g,h (χ) =

n∑
i=1

K

(
d (χ,χi)

h (χ)

)
1yi=g

n∑
i=1

K

(
d (χ,χi)

h (χ)

) =
∑

{i:yi=g}

wi,h (χ)

(18)

with wi,h (χ) =

K

(
d (χ,χi)

h (χ)

)
n∑
i=1

K

(
d (χ,χi)

h (χ)

) .

If we choose a kernel such that K (x) = 0 if |x| < 1
results:

p̂g,h (χ) =
∑
i∈J

wi,h (χ) (19)

where J = {i : yi = g} ∩ {i : d (χ,χi) < h}.

II..VI. Bandwidth selection

Finally, we have to choose h with the goal of minimizing a
loss function that depends on p̂g,h (χi, yi)’s and yi’s:

hLoss = arg inf
h
Loss(h). (20)

With this aim, we will replace the choice of h among an in-
finite setH with an integer parameter k among a finite subset
K, by the consideration of k-Nearest Neighborhood (kNN)
discretized version of (20):

p̂g,k (x) =

∑
i∈J

K

(
d (x,xi)

hk (x)

)
n∑
i=1

K

(
d (x,xi)

hk (x)

) (21)

where hk is such that # {i : d (x,xi) < hk} = k. Thus, we
have to find kLoss = argmin

k∈K
Loss(k). From now on, we

consider p̂g,k the estimator of p̂g .
If we use the cross-validation procedure proposed in [8]

and choose as loss function

Loss (k) = LCV (k, i0) =
G∑
g=1

(
1yi0=g − p(−i0)

g,k (xi0)
)2

,

(22)
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where

p
(−i0)
g,k (xi0) =

∑
i∈J , i 6=i0

K

(
d (xi0 ,xi)

hk (xi0)

)
n∑

i=1, i 6=i0

K

(
d (xi0 ,xi)

hk (xi0)

) ,

and xi0 is the nearest neighbour of x, so we denote i0 =
arg min

i=1,...,n
d (x,xi); hence, the local choice is:

kLCV (xi0) = argmin
k
LCV (k, i0) (23)

kLCV (xi0) −→ hk = hLCV (xi0) (24)

Miss. Rate =

n∑
i=1

1yi 6=yLCVi

n
(25)

III. NONPARAMETRIC CLASSIFICATION OF
UNCORRELATED SURFACES

Let us consider

ψ = {ψ (x1, . . . , xn) ; (x1, . . . , xn) ∈ Rn}

a random n-dimensional supported f.r.v. The observed realiz-
ation ψ of ψ is referred a n-dimensional f.d. In the particular
case of n = 2, that is, of IR2, a regular grid is chosen with
nodes having coordinates ((x1, y1) , . . . , (xN , yM )) . Hence,
in the following, we refer to an M × N rectangular regular
grid.

Figure 1: Discretized surface of Class 1 with G = 2 in our
simulation study

III..I. REFORMULATION OF SEMI–METRICS

The corresponding reformulation of semi-metric based on
FPCA is straightforward. In particular, when n = 2, we have

dFPCAq (ψ1, ψ2) =

√√√√√ q∑
j=1

(
I∑
i=1

wix
∗
i vji

)2

, (26)

where 1 ≤ q ≤ n the number of components chosen,

Σχ (s, t) = 1
n

n∑
i=1

χi (s)χi (t) is the empirical version

of the covariance kernel, vj , j = 1, . . . , q, are the or-
thonormal eigenvectors (corresponding to the components
chosen) of empirical covariance matrix W1/2ΣW

1/2
I×I , with

W = diag (w1, . . . , wI) whose diagonal entries are two-
dimensional quadrature weights, and (x∗1, . . . , x

∗
I) =

= ((ψ1 − ψ2) (x1, y1) , . . . , (ψ1 − ψ2) (xN , yM )) (27)

remains being a real vector, with I = N ×M . As previously,
(xi, yj , i = 1, . . . , N ; j = 1, . . . ,M) ∈ D ⊂ IR2 repres-
ents the set of nodes of a regular rectangular grid, with asso-
ciated discretized functional value of the observed f.d. given
by (ψ (x1, y1) , . . . , ψ (xN , yM )) , which can also be treated
as a real vector associated with the discrete observation of ψ.

Reformulation of FPLSR in the two-dimensional case can
be derived in a similar way. Thus,

dFPLSRq (ψ1, ψ2) =

√√√√√ g∑
j=1

(
I∑
i=1

wix
∗
i v
q
ji

)2

(28)

where x∗i , i = 1, . . . , I, are given as in equation (27), and
vq1, . . . ,v

q
g are performed by FPLSR.

Although it is out of our scope, semi-metrics based on de-
rivatives can be also reformulated by considering the cor-
responding L2 norm of the corresponding partial derivat-
ives. In particular, for n = 2, non-uniform rational B-spline
(NURBS) can be used (see, e.g., [37, 38]).

III..II. SMOLYAK QUADRATURE

We will describe the n-dimensional version of Smolyak
quadrature rule to obtain a set of weights, defining, in particu-
lar, the metric W 1/2ΣW

1/2
I×I , in the numerical approximation

of the integral by a weighted sum of values of the integrand
at certain nodes (see, e.g., [11, 20]).

The main goal is to approximate

InW f :=

∫
∏n
i=1 Ii

f (x1, . . . , xn)
n∏
i=1

Wi (xi) dxi

by a n–sequence of klj -point quadratures (klj = 2lj−1 + 1),
where j ∈ {1, . . . , n}:

Ulj :=

klj∑
i=1

wif (xi) =
2lj−1+1∑
i=1

wif (xi) (29)

with lj ≥ 1. Smolyak rule combines, by means of
tensor products, univariate quadratures rules Ulj , j =
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1, . . . , n, respectively associated with each dimension j, for
j = 1, . . . , n (e.g., Trapezoidal rule, Clenshaw-Curtis rule,
Gauss-Legendre rule, Gauss-Patterson rule, etc).

Definition 3 Let S : C (Ω) → IR and T : C (Ξ) → IR be
operators that admit a representation of the form:

Sf (x) =
m∑
i=1

aif (xi)

Tg (y) =
n∑
j=1

bjg (yj) (30)

with positive weights, x = (x1, . . . , xm) and y =
(y1, . . . , yn). The tensor product of S and T is the linear
operator S ⊗ T : C (Ω× Ξ)→ IR defined by:

Sf ⊗ Tg (x;y) =
m∑
i=1

n∑
j=1

aibjf (xi) g (yj) . (31)

Let
(
U

(j)
lj

)n
j=1

be a sequence of univariate quadrature

rules, where j represents the dimension in which we are
integrating and klj = 2lj−1 + 1 the number of evaluation
points. This univariate rules are chosen in such a way such
that I1

Wj
p = U

(j)
lj

, where p is a polynomial of degree at most
klj .

We denote as
(
w

(j)
i

)klj
i=1

and
(
x

(j)
i

)klj
i=1

the weights and

the nodes (resp.) of the univariate ruleU (j)
lj
, for j = 1, . . . , n.

Thus, the original problem can be approximated in tensor
product form:

InW f ≈
n⊗
j=1

U
(j)
lj
f = Qnk (32)

with #
{
U

(j)
lj

}
= klj = 2lj−1 +1 and l = (l1, . . . , ln) , with

lj ≤ k, for all j ∈ {1, . . . , n} .
In fact, Smolyak quadrature rule proposed in [20] and [12]

uses difference operators instead of directly applying the
tensor product.

Definition 4 Let
(
U

(j)
i

)∞
i=1

be a sequence of univariate
rules in Ij . We define the difference operators in Ij as:

∆
(j)
0 = 0, ∆

(j)
1 = U

(j)
1 and ∆

(j)
i+1 = U

(j)
i+1 − U

(j)
i (33)

Thus, Smolyak quadrature rule of order k in the n-
dimensional rectangle I1× . . .×In (for simplicity we assume
In = I × . . .× I) can be defined as the operator:

Qnk =
∑
‖α‖1≤k

n⊗
j=1

∆(j)
αj (34)

where α ∈ Nn and αj > 0 (which implies that k ≥ n).
Remark that in the case of n = 1, Q1

k = U
(1)
k .

Figure 2: Product grids X(1)
i1
×X(1)

i2
such that ‖(i1, i2)‖∞ ≤

3 (on left) and the Q2
4 grid (on right)

Since there are many terms that are canceled, we shall also
present a combination method of Smolyak rules (see, e.g.,
[42]):

Qnk =
∑

m≤‖α‖1≤k
α∈Nn
α≥1

(−1)
k−‖α‖1

(
n− 1

k − ‖α‖1

) n⊗
j=1

U (j)
αj

(35)
with m = max {n, k − n+ 1}.

Rewritting (34) and using (32), we obtain:

Qnk =
k∑

l=m

∑
‖α‖1=l
α∈Nn
α≥1

kα1∑
j1=1

. . .

kαn∑
jn=1

c(k, n, l)wj,αf (xj,α)

(36)
where c(k, n, l) = (−1)

k−l (n−1
k−l
)
, wj,α = w

(α1)
j1

. . . w
(αn)
jn

and xj,α =
(
x

(α1)
j1

. . . x
(αn)
jn

)
.

III..I. NUMERICAL IMPLEMENTATION

The main steps and auxiliary functions in the implementation
of Smolyak quadrature are the following :

• Step 1 Define the function that provides us univariate
nodes and weights (univariate quadrature rules at each
dimension).

• Step 2 Generate all multi-indices satisfying restrictions
established in the algorithm proposed in [12]. For in-
stance, if n = 3 and k = 5, α could be (1, 1, 1),
(1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 1, 3), (1, 3, 1), (3, 1, 1),
(1, 2, 2), (2, 1, 2) and (2, 2, 1).

• Step 3 Determine, for any vector sequence
(
v(i)
)l
i=1

,

with v(i) ∈ IRni , i = 1, . . . , l, its vector com-
bination. Thus, we define inductively cv,l =

combvec
((
v(i)
)l
i=1

)
as follows:

cv,l =

(
cv,l−1 . . . cv,l−1 . . . cv,l−1 . . . cv,l−1

v
(l)
1 . . .

(nl−1)
v

(l)
1 . . . v

(l)
nl . . .

(nl−1)
v

(l)
nl

)
(37)
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with cv,1 = v(1) = (v
(1)
1 . . . v

(1)
n1 ).

In addition, we have implemented two more functions. A
function that groups weights associated at the same node,
and auxiliary function that deletes the nodes with total
weight equal to zero. Smolyak-nodes are different from the
nodes where we have our observations, so we previously in-
terpolate our f.dat. considering locally polynomials or k-
Nearest Neighborhood Smoother. The assignment of weights
is done in two ways: To each interpolated node, we assign
the weight corresponding to the Nearest Neighbour Smolyak
node; or, alternatively, we assign the weight defined by the
average of the weights associated with the kSmolyak-Nearest
Neighborhood Smolyak nodes.

IV. FUNCTIONAL CLASSIFICATION RESULTS OF
CURVES

The performances of the proposed nonparametric curve
classification methodology, as well as of the one formu-
lated in [8] is now compared in terms of their implement-
ation from a spectrometric curve dataset available at url
http://lib.stat.cmu.edu/datasets/tecator. This dataset is re-
lated to quality control in food industry. It corresponds
to a sample of finely chopped meat. For each unit i,
among 215 pieces, we observe one spectrometric curve (χi
f.d.) which corresponds to the absorbance measured at 100
wavelengths. Moreover, we have measured its fat content yi,
for i = 1, . . . , 215, obtained by an analytical chemical pro-
cessing.

In the implementation of the classification procedure for
validation purposes, our f.dat. sample has been randomly
splitted into two sub-samples respectively corresponding to
the training f.dat. sample, which constitutes a 70% of the
total dataset, and a f.dat. validation sample or test sample,
which in our case constitutes a 30% of the total sample.

Figure 3 shows spectrometric f.dat. The magnitude plotted
is absorbance versus wavelength for different pieces, where
100 channel spectrum of absorbances are showed. Hence,
each data appears as a discretized curve in 100 points, and
interpolation is performed to get the corresponding values in
a finer partition of the set containing the 100 points within
the same wavelength interval 850−1050 (see Figure 5). Two
catgories or groups are distinguished in advance: fat content
under 20 (yi = 1) and over 20 (yi = 2) (see Figure 4).

Figure 3: Discretized spectometric curves.

Figure 4: Discretized curves splitted by groups: the blue ones
belong to class 1 (low fat content) and the red ones belong to
class 2 (higher fat content).

Figure 5: Accuracy of interpolation of a curve at each cat-
egory, with step called stepmesh.

Figure 6 shows the results obtained using FPCA semi-
metric, when different kernels (quadratic, indicator and tri-
angle) and inputs (components, factors or orders) are con-
sidered, using the methodology given in [8], by means of 50
simulations.

Figure 6: Misclassification rate of functional classification
using the method proposed in [8], with FPCA semi-metric.
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Figure 7 shows the results obtained using FPLSR semi-
metric, when different kernels and inputs are considered, us-
ing the methodology given in [8].

Figure 7: Misclassification rate of functional classification
using the method proposed in [8], with FPLSR semi-metric.

Figure 8 shows the results obtained using a semi-metric
based on derivatives, when different kernels and inputs are
considered.

Figure 8: Misclassification rate of functional classification
using the method proposed in [8], with semi-metric based on
derivatives.

At each one of these box-plots, we reflect results obtained
with implementation of a quadratic kernel in the first three
ones, the next three ones reflect results with indicator kernel,
and the three last ones show the results with triangle kernel.
Alternatively, Figures 9, 10 and 11 display the results using
our methodology in terms of Smolyak quadrature rule con-
sidering three neighbors, implementing trapezoid rule with
k = 5 and using discretization step equal to 0.25.

Figure 9: Results obtained with our implementation using
Trapezoid rule (level 5), with discretization step equal to 0.25
and 3 neighbors, with FPCA.

Figure 10: Results obtained with our implementation using
Trapezoid rule (level 5), with discretization step equal to 0.25
and 3 neighbors, with FPLSR.
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Figure 11: Results obtained with our implementation using
Trapezoid rule (level 5), with discretization step equal to 0.25
and 3 neighbors, with semi-metric based on derivatives.

The following Figures 12, 13 and 14 show different imple-
mentations of our methodology with different inputs such as
Clenshaw-Curtis quadrature rule or doing directly the assign-
ment of Smolyak weights. A similar performance is obtained
in comparison with the previous results displayed. One can
observe that our methodology is more flexible than the one
presented in [8]. However, our methodology is also affected
by the interpolation error, and the error associated with the
rule considered for the assigning of weights. This fact can
also be observed in Figures 15 and 16, where we have used
a greater interpolation step. Note that a slight improvement
in the accuracy can be appreciated. Summarizing, we have
to look for a compromise between precision in the numer-
ical approximation of the integral, increasing the number of
points in the sample by interpolation, and the associated in-
terpolation and weight allocation errors.

Figure 12: Results obtained with our implementation using
Clenshaw-Curtis rule (level 5), with discretization step equal
to 0.25 and 3 neighbours.

Figure 13: Results obtained with our implementation using
Trapezoidal rule (level 7), with discretization step equal to
0.25.

Figure 14: Results obtained with our implementation using
Clenshaw-Curtis rule (level 7), with discretization step equal
to 0.25.

Figure 15: Results obtained with our implementation using
Trapezoidal rule (level 5), with discretization step equal to
0.45.
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Figure 16: Results obtained with our implementation using
Clenshaw-Curtis rule (level 5), with discretization step equal
to 0.45.

V. NUMERICAL EXAMPLE FOR FUNCTIONAL
CLASSIFICATION OF TREND IN RANDOM

GAUSSIAN SURFACES

A sample of 200 Gaussian random surfaces is generated, over
a regular grid within the square [1, 5] × [1, 5], with the same
integral covariance operator defined by the isotropic Gaus-
sian kernel in two dimensions. These Gaussian surfaces have
two different (which lead to the definition of our two groups),
but very close, functional means (see Figure 17). Our prob-
lem consists of discrimination between different trends de-
fining the mean value of Gaussian surfaces. This numer-
ical example is considered previously to our main simula-
tion study developed in the next section where, among other
subjects, we solve the problem of discrimination between dif-
ferent spatial correlation functions characterizing the infinite-
dimensional distribution of zero-mean Gaussian random sur-
faces.

Let us then consider the following two groups of Gaussian
random surfaces:

χ1 ∼ N
(
µ1 = (hi)i=1,...,k ,Σ = CCT

)
(38)

χ2 ∼ N
(
µ2 = µ1 + v,Σ = CCT

)
(39)

where hi = i
N×M + 2, i = 1, . . . , k, k =

N × M, with v = (0.5, 0.5, . . . , 0.5) ∈ IRN×M ,

and Cij = e−‖(xi,yi)−(xj ,yj)‖22 , where χj de-
notes a random surface of type j, j = 1, 2,
with values defined over a regular grid given by
((x1, y1) , . . . , (xN , yM )) . We have imposed a minimum
number of surfaces belonging to each class.

Figure 17: Surfaces plotted: on left surface belongs to cat-
egory 1, on right surface belongs to category 2.

Note that now we have not to interpolate since we can gen-
erate surfaces as finely as we want. A minimum number of
surfaces belonging to each class is fixed to ensure the repres-
entativeness of the groups. As commented, in the previous
implementation of our methodology in terms of curves, we
restrict our attention to the FPCA and FPLSR semi-metrics.
Figures 18 and 19 then display the derived classification res-
ults, reflecting a good performance of our methodology for
discrimination between different trends of Gaussian surfaces,
keeping in mind that the two categories distinguished are very
close.

Figure 18: Results obtained with our classification method-
ology for surfaces using Clenshaw-Curtis rule(level 7) on a
20× 20 spatial regular grid.
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Figure 19: Results obtained with our classification methodo-
logy for surfaces using Trapezoidal rule (level 7) on a 20×20
spatial regular grid.

Consider now two groups respectively based on a linear
and a non-linear, cosine type, trend surfaces:

µ2 = cos
(
µ1
π

2

)
i=1,...,N×M

(40)

where µ1 is given as before. For a lower resolution level,
namely for a 12 × 12 regular grid, FPLSR clearly outper-
forms FPCA (see Figure 20). Thus, FPLS is more suitable for
well-differentiated groups when numerical integration must
be performed from a low quality discrete version of our sur-
face dataset.

Figure 20: Results obtained with our classification methodo-
logy for surfaces using Trapezoidal rule (level 4) on a 12×12
spatial regular grid.

VI. FUNCTIONAL CLASSIFICATION RESULTS OF
RANDOM AND NON-RANDOM SURFACE
IRREGULARITIES OF RAILWAY TRACK

The problem of deterministic and random vibration classific-
ation from the observation of surface irregularities of railway
track will be addressed in this section, which constitutes a key
problem in the field of railway engineering. As commented
in [25], it is very important to modeling these irregularities
since the created loads resulting from them cause fatigue in
the vehicles and rail beams. According to [47], the rail ir-
regularities are the second leading cause of bridge vibrations,
and the first one of train vibrations.

Two types of rail irregularities are studied in [25, 47]: ran-
dom and non-random irregularities. Random irregularities

include the roughness of the rails. Here, these irregularit-
ies are represented in terms of zero-mean Gaussian surfaces
with different spatial functional correlations. Deterministic
irregularities are usually represented in terms of a irregular-
ity function of the railway r(x) (see, for example, [9]).

VI..I. NON-RANDOM SURFACES IRREGULARITIES

As proposed in [25, 47] approach, an one-dimensional rail-
way track is firstly considered. We can see in the example
shown in Figure 21 that a simple beam of span length L =
50 m is analyzed. We denote as B the distance from the
origin to the first irregularity, and A the constant rail length
between two imperfections (see Figure 21).

Figure 21: Illustrative and very simple example of the ap-
proach, with L = 50 m and N = 3.

Setting the number of these irregularities in the railway
track of length L, denoted as N , and considering the depth
and the length of the imperfections (ζ and η respectively, as
shown in Figure 21), we can establish the following formula:

N =
L−B
A+ η

(41)

Let us now consider three different models of imperfec-
tions:

• Model 1: N1 = 3 and B1 = 4.5.

• Model 2: N2 = 4 and B2 = 2.5.

• Model 3: N3 = 5 and B3 = 1.

We divide each one of them into two models using differ-
ent values of A:

• Model 1: N1 = 3, B1 = 4.5 and A1 = 3.5.

• Model 2: N2 = 3, B2 = 2.5 and A2 = 5.2.

• Model 3: N3 = 4, B3 = 1 and A3 = 3.5.

• Model 4: N4 = 4, B4 = 4.5 and A4 = 5.2.

• Model 5: N5 = 5, B5 = 2.5 and A5 = 3.5.

• Model 6: N6 = 5, B6 = 1 and A6 = 5.2.
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Using two different values of ζ, the final set of models is
given in Table 1:

Table 1: Final models
Models N B (m) A (m) ζ (m)

Model 1 3 4.5 3.5 0.007
Model 2 3 4.5 5.2 0.007
Model 3 3 4.5 3.5 0.015
Model 4 3 4.5 5.2 0.015
Model 5 4 2.5 3.5 0.007
Model 6 4 2.5 5.2 0.007
Model 7 4 2.5 3.5 0.015
Model 8 4 2.5 5.2 0.015
Model 9 5 1 3.5 0.007
Model 10 5 1 5.2 0.007
Model 11 5 1 3.5 0.015
Model 12 5 1 5.2 0.015

Choosing any of them, and using formula (41), we can get
the corresponding set of values of η (see Table 2):

Table 2: Set of values of η
Models η (m)

Model 1 11.667
Model 2 9.967
Model 3 11.667
Model 4 9.967
Model 5 8.375
Model 6 6.675
Model 7 8.375
Model 8 6.675
Model 9 6.300
Model 10 4.600
Model 11 6.300
Model 12 4.600

As proposed in [9], for each one of these models, denoted
as Mi (i = 1, . . . , 12), the non-random irregularities can be
mathematically defined by the following function:

r (x) =

{
ζ
2

(
1− cos

(
2πx
η

))
if C ≤ x ≤ C + η

0 elsewhere
(42)

where C = B + k (A+ η) , k = 0, 1, . . . , N.

As we want to deal with surfaces, in this paper we shall ex-
tend this approach to the two-dimensional framework. Such
as the rail width is quite smaller than L, we use a anisotropic
model where the imperfections are deployed through the ’x’
axis (see Figures 22).

Figure 22: Illustrative and very simple example of the two-
dimensional approach, with L = 50 m, W = 2.5 m and
N = 3

Extending equation (42) and setting W = 2.5, we have

r (x, y) =

{
ζ
2

(
1− cos

(
2πx
η

))
if C ≤ x ≤ C + η

0 elsewhere
(43)

where C = B + k (A+ η) , k = 0, 1, . . . , N and
y ∈ [0,W ] .

As well as in previous sections we have been working with
a square regular grid, where the length coincides with the
width, a rectangular grid, with L = 50 m and W = 2.5 m is
used now. In section III..II., for simplicity we have assumed
In = I × · · · × I, but this implementation used in the pre-
vious section is not valid here, and we have to recalculate all
the steps of the proposed numerical integration algorithm for
functional classification of noisy Gaussian surfaces. We have
then obtained from formula (36):

Qnk =

k∑
l=m

∑
‖α‖1=l
α∈Nn
α≥1

kα1∑
j1=1

. . .

kαn∑
jn=1

c(k, n, l)wj,αf (xj,α)

(44)
where c(k, n, l) = (−1)

k−l (n−1
k−l
)
, wj,α = w

(α1)
j1

. . . w
(αn)
jn

and xj,α =
(
x

(α1)
j1

. . . x
(αn)
jn

)
.

Note that, in the previous section, x(αi)
ji
∈ I, for all i =

1, . . . , n. However, we now compute x(αi)
ji

such as x(αi)
ji
∈

Ii ∀i = 1, . . . , n. Rewritting (44), we obtain:

Qn,Lk =
k∑

l=m

∑
‖α‖1=l
α∈Nn
α≥1

kα1∑
j1=1

. . .

kαn∑
jn=1

c(k, n, l)wj,αf (xj,α)

(45)
where c(k, n, l) = (−1)

k−l (n−1
k−l
)
, wj,α = w

(α1)
j1

. . . w
(αn)
jn

are the weights of the U
(j)
lj

univariate quadrature in Ij ,

xj,α =
(
x

(α1)
j1

. . . x
(αn)
jn

)
∈ I1 × · · · × In and L is an in-

terval matrix where Lij = aij , i = 1, . . . , n, j = 1, 2, with
Ii = (ai1, ai2) .
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Figures 23, 24 and 25 provide a zoom of the generated ir-
regularity models for the two-dimensional deterministic case.
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Figure 23: Irregularity belongs to model M3.
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Figure 24: Irregularity belongs to model M5.
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Figure 25: Irregularity belongs to model M12.

It is assumed that our observed irregularities are measured
by a device that introduces and additive zero-mean Gaussian
noise. That is, they are perturbed by such a noise as follows:

Si (x, y) = r (x, y) + ε (x, y) (46)

for i = 1, . . . , 12, models considered, and for ε (x, y) ∼
N
(
µ = 0,Σ = σ2

i
˙Id
)

being a Gaussian white noise with
standard deviation σi = ηi

2 , i = 1, . . . , 12. Figures 26, 27
and 28 show again a zoom of the perturbed Gaussian sur-
faces.
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Figure 26: Irregularity perturbed belongs to model M3.
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Figure 27: Irregularity perturbed belongs to model M5.
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Figure 28: Irregularity perturbed belongs to model M12.

We consider a regular grid corresponding to discretization
steps 1.3 in length, and 0.3 in width. A minimum number of
surfaces belonging to each group has been set and 50 simula-
tions have been running. Applying the same methodology as
the one used in Section V. with a sample of 500 surfaces, we
obtain the results shown in Figure 29.
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Figure 29: Results obtained with our classification method-
ology for non-random irregularities using Trapezoidal rule
(level 7).

Remark that the accuracy depends on the magnitude of
σi, i = 1, . . . , 12, and the length of the gap between the

irregularities (A). One can observe that to a greater σi,
i = 1, . . . , 12, corresponds a better performance. For the
same reason, we get a better accuracy using a greater value
of A (see Figure 30).

pca4Quadratic pca6Indicator pca8Triangle mplsr3Indicator mplsr5Triangle

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

SURFACES: SEMI−METRICS, 50 simulations, 7 Smolyak level, rule TP, no surfaces gen. = 500,

M
is

cl
as

s.
 R

at
e

Figure 30: Results obtained with our classification method-
ology for non-random irregularities using Trapezoidal rule
(level 7) and Anew = (1.5, 2.2) instead of previous A =
(3.5, 5.2).

VI..II. RANDOM SURFACES IRREGULARITIES

As commented before, rail imperfections can be divided into
deterministic and random imperfections. Different factors
may be the cause of these random irregularities, as imperfec-
tions in material or in rail joints, errors during design, among
others.

We are going to focus on the little roughness of the rails,
which is included in random imperfections, by means of
Gaussian surfaces. Since we will consider little roughness,
distributions with null mean will be considered, taking into
account that the origin of ordinate axis is represented by the
rail. Generating a sample of 200 Gaussian surfaces, we will
distinguish the following four categories of roughness (see
Figures 31, 32, 33 and 34):

χh ∼ N
(
µh = 0,Σ = ChC

T
h

)
(47)

where h = 1, 2, 3, 4 identifies our categories,
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and

Chij =
kh
LW

e
−‖( xiL ,

yi
W )−(

xj
L
,
yj
W )‖

2
kh (h = 1, 3)

represents the correlation structure model for each group
h = 1, 3, within the family of Ornstein-Uhlenbeck covari-
ance kernels, and

Chij =
kh
LW

e
−‖( xiL ,

yi
W )−(

xj
L
,
yj
W )‖2

2
kh (h = 2, 4)

within the family of spatial correlations functions given by
the non-linear isotropic Gaussian kernel, using a vector of
scales kh = (0.04, 0.04, 0.06, 0.06) . Both correlation mod-
els correspond to weak dependence in space (see Figures 31,
32, 33 and 34). As previously, a minimum number of sur-
faces belonging to each class has been fixed, and the two-
dimensional rectangle [0, L] × [0,W ] has been considered,
with discretization step size 1.3 in length, and discretization
step size 0.3 in width.
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Figure 31: Random surface belongs to category 1, using the
isotropic Ornstein–Uhlenbeck covariance kernel and kh =
0.04 (weak correlated model).
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Figure 32: Random surface belongs to category 2, using the
isotropic Gaussian covariance kernel and kh = 0.04 (weak
correlated model).
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Figure 33: Random surface belongs to category 3, using the
isotropic Ornstein-Uhlenbeck covariance kernel and kh =
0.06 (strong correlated model).
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Figure 34: Random surface belongs to category 4, using the
isotropic Gaussian covariance kernel and kh = 0.06 (strong
correlated model).

One can observe from the random surfaces displayed in
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Figures 31, 32, 33 and 34, that the random surfaces with co-
variance matrix given by the isotropic Gaussian kernel dis-
play a smoother local behavior than the ones with Ornstein–
Uhlenbeck correlation kernel. Note that the first ones display
stronger spatial correlations (see equation (47)). Parameter
kh within each spatial functional correlation family repres-
ents the spatial dependence range (scale parameter) of each
random surface class. Applying our methodology as in Sub-
section VI..I. with a sample of 200 surfaces, the following
results are obtained (see Figure 35):

Figure 35: Results obtained with our classification method-
ology for random irregularities using Trapezoidal rule (level
7), using a weak correlated model.

Weak correlated surfaces, e.g., kh = (0.04, 0.04, 0.5, 0.5) ,
are displayed in Figures 36 and 37, while Figures 38 and 39
show strong-correlated surfaces.
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Figure 36: Random surface belongs to category 1, using the
isotropic Ornstein–Uhlenbeck covariance kernel and kh =
0.04 (weak spatial correlated surfaces).
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Figure 37: Random surface belongs to category 2, using the
isotropic Gaussian covariance kernel and kh = 0.04 (weak
spatial correlated surfaces).

0
10

20
30

40
50

0

1

2

3

4

−0.1

−0.05

0

0.05

0.1

0.15

 

x

L= 50, W= 2.500000e+00,k= [0.04        0.04         0.5         0.5]

y
 

r x

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

Figure 38: Random surface belongs to category 3, using the
isotropic Ornstein–Uhlenbeck covariance kernel and kh =
0.5 (strong spatial correlated surfaces).
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Figure 39: Random surface belongs to category 4, using the
isotropic Gaussian covariance kernel and kh = 0.5 (strong
spatial correlated surfaces).

The classification results are displayed in Figure 40, from
the implementation of our proposed functional statistical
methodology to discriminate between strong and weak cor-
related Gaussian surfaces.
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Figure 40: Results obtained with our classification method-
ology for random irregularities using Trapezoidal rule (level
7), using a weak spatial correlation model.

Finally, to discriminate between strong spatial correlated
surfaces (smoother surfaces), the following values of para-
meter kh are considered kh = (0.2, 0.2, 0.6, 0.6) (see Figures
41, 42, 43 and 44). The coresponding classification results
are showed in Figure 45.
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Figure 41: Random surface belongs to category 1, using the
isotropic Ornstein–Uhlenbeck covariance kernel and kh =
0.2 (strong spatial correlated random surface).
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Figure 42: Random surface belongs to category 2, using the
isotropic Gaussian covariance kernel and kh = 0.2 (strong
spatial correlated random surface).
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Figure 43: Random surface belongs to category 3, using the
isotropic Ornstein–Uhlenbeck covariance kernel and kh =
0.6 (strong spatial correlated random surface).
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Figure 44: Random surface belongs to category 4, using the
isotropic Gaussian covariance kernel and kh = 0.6 (strong
spatial correlated random surface).
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Figure 45: Results obtained with our classification method-
ology for random irregularities using Trapezoidal rule (level
7), from strong spatial correlated random surfaces.

We can appreciate a better performance of the functional
classification methodology proposed when the non-linear
Gaussian random surfaces analyzed display weak correlation,
inducing a higher degree of local singularity which facilitates
the detection of such a more pronounced roughness in the
railway track.

VII. CONCLUSIONS

In all our implementations, different kernels have been con-
sidered, as quadratic, indicator and triangle kernels; and dif-
ferent inputs have been used. We improved the accuracy
when we increase the number of evaluations in the Smolyak
quadrature rule in both Trapezoidal and Clenshaw Curtis rule.

In Sections IV. and V., we obtain a better performance us-
ing Trapezoidal rule. This is explained by the fact that the
Clenshaw-Curtis quadrature rule is a truncated expanding in
the series of trigonometric functions; thus, it looks natural
that we obtain less accuracy. This becames increasingly evid-
ent using FPCA semi-metric (see also Section VI.). With
these results, we notice that the choice of univariate quad-
rature rule is not as trivial as it might seem at first sight. Such
as the FPCA semi-metric only depends on the data, its accur-
acy is more affected by the choice of nodes. Meanwhile, the
MPLSR semi-metric also depends on responses that are not
affected by the quadrature rule. For that reason, FPLSR semi-
metric provides us a better performance than FPCA case.
Note also that that the semi-metric based on derivatives is
the more accuracy (see Section IV.).

One can observe that with greater interpolation step (see
Section IV.) or a finer grid (see Sections V. and VI.), a slight
improvement is obtained due to associated interpolation error
and weight allocation error.

In Section V., note also that the two categories distin-
guished in surfaces classification are very close. Also, for
well-differentiated categories or groups, FPLSR outperforms
FPCA when low-quality data are available or when numerical
integration rules are applied at low resolution levels.

The noisy non-random irregularities studied in Section VI.
provide us 12 categories to discriminate, corresponding to
12 irregularity models Mi, i = 1, . . . , 12. Despite having
a large number of categories and the closeness between per-
turbed surfaces, Figure 29 show us a good performance of
our algorithm, such as we obtain a relatively low missclassi-
fication rate. In the light of the results shown in Figure 30, it
was concluded that the smaller the distance A between irreg-
ularities, the greater the missclassification rate is, since they
are more difficult to distinguish to each other.

The surface classification problem addressed in Section
VI. leads us to the following general conclusion: The best
performance of our proposed functional classification meth-
odology is obtained when deterministic surfaces perturbed
by additive Gaussian white noise are considered (non-linear
model with random perturbation). While, in the Gaussian
random surface case considered, a better performance is
achieved when weak spatial correlated surfaces must be dis-
criminated against strong spatial correlated surfaces. On the
other hand, the worst performance is observed when we have
to discriminate between smoother random surfaces, corres-
ponding to strong spatial correlated zero-mean Gaussian sur-
faces.

Summarizing, the results obtained in the real-data example
considered, and in the simulation study undertaken support
the conclusion that our proposed functional classification al-
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gorithm for n-dimensional supported non-linear random and
deterministic functions offer an extended version of the pre-
vious one derived in [8], in a more flexible way, in particular,
addressing the problem of random surface classification.
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